Search results for "Factor ii"

showing 10 items of 34 documents

Novel deletion in 11p15.5 imprinting center region 1 in a patient with Beckwith-Wiedemann syndrome provides insight into distal enhancer regulation a…

2016

Background Beckwith–Wiedemann syndrome (BWS) is an early-onset overgrowth disorder with a high risk for embryonal tumors. It is mainly caused by dysregulation of imprinted genes on chromosome 11p15.5; however, the driving forces in the development of tumors are not fully understood. Procedure We report on a female patient presenting with macrosomia, macroglossia, organomegaly and extensive bilateral nephroblastomatosis. Adjuvant chemotherapy was initiated; however, the patient developed hepatoblastoma and Wilms tumor at 5 and 12 months of age, respectively. Subsequent radiofrequency ablation of the liver tumor and partial nephrectomy followed by consolidation therapy achieved complete remis…

0301 basic medicineHepatoblastomaPathologymedicine.medical_specialtyBeckwith-Wiedemann SyndromeBeckwith–Wiedemann syndrome030105 genetics & hereditymedicine.disease_cause03 medical and health sciencesGenomic ImprintingInsulin-Like Growth Factor IIMacroglossiaMedicineHumansImprinting (psychology)NephroblastomatosisSequence Deletionbusiness.industryChromosomes Human Pair 11Infant NewbornWilms' tumorHematologyDNA Methylationmedicine.diseasePrognosis030104 developmental biologyCell Transformation NeoplasticPhenotypeOncologyPediatrics Perinatology and Child HealthCancer researchFemalemedicine.symptombusinessGenomic imprintingCarcinogenesisPediatric bloodcancer
researchProduct

Hot1 factor recruits co-activator Sub1 and elongation complex Spt4/5 to osmostress genes.

2016

Hyperosmotic stress response involves the adaptative mechanisms needed for cell survival. Under high osmolarity conditions, many stress response genes are activated by several unrelated transcription factors that are controlled by the Hog1 kinase. Osmostress transcription factor Hot1 regulates the expression of several genes involved in glycerol biosynthesis, and the presence of this transcription factor in their promoters is essential for RNApol II recruitment. The physical association between Hog1 and Hot1 activates this transcription factor and directs the RNA polymerase II localization at these promoters. We, herein, demonstrate that physical and genetic interactions exist between Hot1 …

0301 basic medicineSaccharomyces cerevisiae ProteinsChromosomal Proteins Non-HistoneResponse elementGenes FungalRNA polymerase IISaccharomyces cerevisiaeBiologyBiochemistry03 medical and health sciencesOpen Reading FramesOsmotic PressureRNA Processing Post-TranscriptionalPromoter Regions GeneticMolecular BiologyRNA polymerase II holoenzymeGeneticsGeneral transcription factorNuclear ProteinsPromoterCell BiologyDNA-Binding Proteins030104 developmental biologybiology.proteinTranscription factor II FTranscription factor II ETranscription factor II DTranscriptional Elongation FactorsProtein BindingTranscription FactorsThe Biochemical journal
researchProduct

Defects in the NC2 repressor affect both canonical and non-coding RNA polymerase II transcription initiation in yeast.

2016

BACKGROUND: The formation of the pre-initiation complex in eukaryotic genes is a key step in transcription initiation. The TATA-binding protein (TBP) is a universal component of all pre-initiation complexes for all kinds of RNA polymerase II (RNA pol II) genes, including those with a TATA or a TATA-like element, both those that encode proteins and those that transcribe non-coding RNAs. Mot1 and the negative cofactor 2 (NC2) complex are regulators of TBP, and it has been shown that depletion of these factors in yeast leads to defects in the control of transcription initiation that alter cryptic transcription levels in selected yeast loci. RESULTS: In order to cast light on the molecular func…

0301 basic medicineSaccharomyces cerevisiae ProteinsTranscription GeneticRNA polymerase IISaccharomyces cerevisiaeGenètica molecularNC203 medical and health sciencesSaccharomycesTranscripció genèticaGeneticsTATACryptic transcriptRNA polymerase II holoenzymeGeneticsbiologyGeneral transcription factorTATA-Box Binding ProteinTranscription initiationPhosphoproteinsTATA-Box Binding ProteinYeastRepressor Proteins030104 developmental biologyTATA-likebiology.proteinTranscription factor II FATP-Binding Cassette TransportersRNA Polymerase IITranscription factor II DTranscriptomeTranscription factor II BProteïnesTranscription factor II AResearch ArticleBiotechnologyTranscription Factors
researchProduct

The SAGA/TREX‑2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally

2018

Abstract Background Eukaryotic transcription is regulated through two complexes, the general transcription factor IID (TFIID) and the coactivator Spt–Ada–Gcn5 acetyltransferase (SAGA). Recent findings confirm that both TFIID and SAGA contribute to the synthesis of nearly all transcripts and are recruited genome-wide in yeast. However, how this broad recruitment confers selectivity under specific conditions remains an open question. Results Here we find that the SAGA/TREX-2 subunit Sus1 associates with upstream regulatory regions of many yeast genes and that heat shock drastically changes Sus1 binding. While Sus1 binding to TFIID-dominated genes is not affected by temperature, its recruitmen…

0301 basic medicineSaccharomyces cerevisiae Proteinslcsh:QH426-470Transcription GeneticSAGASaccharomyces cerevisiaeBiologySus103 medical and health sciencesTranscripció genèticaTranscription (biology)Stress PhysiologicalGene Expression Regulation FungalCoactivatorGeneticsTranscriptional regulationRNA MessengerPromoter Regions GeneticMolecular BiologyGeneGeneral transcription factorResearchEukaryotic transcriptionNuclear ProteinsRNA-Binding ProteinsRNA FungalCell biologylcsh:Genetics030104 developmental biologyChIP-exoRegulatory sequenceTrans-ActivatorsTranscription factor II DTranscriptionGenèticaProtein BindingGRO
researchProduct

Iwr1 facilitates RNA polymerase II dynamics during transcription elongation.

2017

Iwr1 is an RNA polymerase II (RNPII) interacting protein that directs nuclear import of the enzyme which has been previously assembled in the cytoplasm. Here we present genetic and molecular evidence that links Iwr1 with transcription. Our results indicate that Iwr1 interacts with RNPII during elongation and is involved in the disassembly of the enzyme from chromatin. This function is especially important in resolving problems posed by damage-arrested RNPII, as shown by the sensitivity of iwr1 mutants to genotoxic drugs and the Iwr1's genetic interactions with RNPII degradation pathway mutants. Moreover, absence of Iwr1 causes genome instability that is enhanced by defects in the DNA repair…

0301 basic medicineTranscription factoriesCytoplasmSaccharomyces cerevisiae ProteinsDNA RepairTranscription GeneticBiophysicsActive Transport Cell NucleusRNA polymerase IISaccharomyces cerevisiaeBiochemistryGenomic Instability03 medical and health sciencesStructural BiologyGeneticsMolecular BiologyRNA polymerase II holoenzymePolymeraseCell NucleusbiologyGeneral transcription factorMolecular biologyChromatinCell biology030104 developmental biologybiology.proteinTranscription factor II FRNA Polymerase IITranscription factor II DCarrier ProteinsTranscription factor II BDNA DamageBiochimica et biophysica acta. Gene regulatory mechanisms
researchProduct

Different pathways for the nuclear import of yeast RNA polymerase II

2015

Recent studies suggest that RNA polymerase II (Pol II) has to be fully assembled before being imported into the nucleus, while other reports indicate a distinct mechanism to import large and small subunits. In yeast, Iwr1 binds to the holoenzyme assembled in the cytoplasm and directs its nuclear entry. However, as IWR1 is not an essential gene, Iwr1-independent pathway(s) for the nuclear import of Pol II must exist. In this paper, we investigate the transport into the nucleus of several large and small Pol II subunits in the mutants of genes involved in Pol II biogenesis. We also analyse subcellular localization in the presence of drugs that can potentially affect Pol II nuclear import. Our…

Active Transport Cell NucleusBiophysicsRNA polymerase IISaccharomyces cerevisiaeBiochemistrychemistry.chemical_compoundStructural BiologyRNA polymeraseGeneticsmedicineMolecular BiologyCell NucleusbiologyProcessivitySubcellular localizationMolecular biologyCell biologyCell nucleusmedicine.anatomical_structurechemistrybiology.proteinRNA Polymerase IITranscription factor II DNuclear transportCarrier ProteinsBiogenesisBiochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
researchProduct

Elevated serum levels of IGF-binding protein 2 in patients with non-seminomatous germ cell cancer: correlation with tumor markers alpha-fetoprotein a…

2008

Background/aimsAlterations of the IGF system have been described in several different types of cancer. However, no information is available about the role of the IGF system in patients with non-seminomatous germ cell cancer.MethodsFree IGF-I, IGF-II, acid-labile subunit, and IGF-binding proteins (IGFBPs) 1–4 were analyzed by specific RIAs in 32 patients with untreated non-seminomas and compared with IGFBP levels of 38 healthy controls. Serum IGFBPs were analyzed by western ligand blotting (WLB) and immunoblotting. In 16 patients, IGFBP profiles were measured before, during, and after treatment.ResultsIn patients with testicular cancer, IGF-II levels were on average 1.44-fold higher than in …

AdultMalemedicine.medical_specialtyEndocrinology Diabetes and MetabolismProtein subunitBiologyChorionic GonadotropinInsulin-like growth factor-binding proteinHuman chorionic gonadotropinEndocrinologyTesticular NeoplasmsInsulin-Like Growth Factor IIRecurrenceInternal medicinemedicineBiomarkers TumorHumansIn patientTesticular cancerBinding proteinCancerGeneral MedicineMiddle AgedNeoplasms Germ Cell and Embryonalmedicine.diseaseUp-RegulationInsulin-Like Growth Factor Binding ProteinsInsulin-Like Growth Factor Binding Protein 2EndocrinologyInsulin-Like Growth Factor Binding Protein 3Case-Control Studiesbiology.proteinalpha-FetoproteinsOncofetal antigenProtein Processing Post-TranslationalEuropean journal of endocrinology
researchProduct

Regulon-Specific Control of Transcription Elongation across the Yeast Genome

2009

Transcription elongation by RNA polymerase II was often considered an invariant non-regulated process. However, genome-wide studies have shown that transcriptional pausing during elongation is a frequent phenomenon in tightly-regulated metazoan genes. Using a combination of ChIP-on-chip and genomic run-on approaches, we found that the proportion of transcriptionally active RNA polymerase II (active versus total) present throughout the yeast genome is characteristic of some functional gene classes, like those related to ribosomes and mitochondria. This proportion also responds to regulatory stimuli mediated by protein kinase A and, in relation to cytosolic ribosomal-protein genes, it is medi…

Cancer ResearchSaccharomyces cerevisiae Proteinslcsh:QH426-470Transcription GeneticComputational Biology/Transcriptional RegulationRNA polymerase IISaccharomyces cerevisiaeRegulonGenètica molecularSaccharomycesTranscripció genèticaTranscription (biology)GeneticsTranscriptional regulationMolecular BiologyRNA polymerase II holoenzymeGeneGenetics (clinical)Ecology Evolution Behavior and SystematicsGeneticsbiologyGenetics and Genomics/Functional GenomicsMolecular Biology/Transcription ElongationHigh Mobility Group ProteinsGenetics and Genomics/Gene ExpressionElongation factorDNA-Binding Proteinslcsh:GeneticsTAF4biology.proteinRNARNA Polymerase IITranscription factor II DGenome FungalTranscriptional Elongation FactorsBiochemistry/Transcription and TranslationResearch Article
researchProduct

Insulin-like growth factors counteract the effect of interleukin 1 beta on type II phospholipase A2 expression and arachidonic acid release by rabbit…

1994

International audience; Interleukin 1 beta was found to stimulate arachidonic acid release, and the synthesis and secretion of type II phospholipase A2 by rabbit articular chondrocytes in vitro. Interleukin 1 beta had no effect on the level of cytosolic phospholipase A2 mRNA. Insulin-like growth factors, which help stabilize the cartilage matrix, reduced the effect of interleukin 1 beta on type II phospholipase A2 activity and mRNA level, and decreased the Interleukin 1 beta-stimulated arachidonic acid release to the basal values. This suggests that type II phospholipase A2 plays a key role in arachidonic acid release from rabbit articular chondrocytes and that insulin-like growth factors c…

Cartilage Articularmedicine.medical_specialtymedicine.medical_treatmentBiophysicsIn Vitro TechniquesBiochemistryChondrocytePhospholipases AInterleukin 1βInsulin-like growth factorchemistry.chemical_compoundPhospholipase A2[ CHIM.ORGA ] Chemical Sciences/Organic chemistryPhospholipase A2Structural BiologyInsulin-Like Growth Factor IIInternal medicineGeneticsmedicineAnimalsInsulin-like growth factorRNA MessengerInsulin-Like Growth Factor IMolecular BiologyArachidonic Acidbiology[CHIM.ORGA]Chemical Sciences/Organic chemistryArthritisInterleukinCell Biology[CHIM.ORGA] Chemical Sciences/Organic chemistryChondrocyteSomatomedinPhospholipases A2Endocrinologymedicine.anatomical_structureCytokinechemistryInsulin-like growth factor 2biology.proteinArachidonic acidRabbitsInterleukin-1
researchProduct

TFIIH Operates through an Expanded Proximal Promoter To Fine-Tune c-myc Expression

2004

A continuous stream of activating and repressing signals is processed by the transcription complex paused at the promoter of the c-myc proto-oncogene. The general transcription factor IIH (TFIIH) is held at promoters prior to promoter escape and so is well situated to channel the input of activators and repressors to modulate c-myc expression. We have compared cells expressing only a mutated p89 (xeroderma pigmentosum complementation group B [XPB]), the largest TFIIH subunit, with the same cells functionally complemented with the wild-type protein (XPB/wt-p89). Here, we show structural, compositional, and functional differences in transcription complexes between XPB and XPB/wt-89 cells at t…

Chromatin ImmunoprecipitationDNA ComplementaryCell SurvivalUltraviolet RaysBlotting WesternGreen Fluorescent ProteinsGene ExpressionRepressorCellular homeostasisBiologyTransfectionModels BiologicalProto-Oncogene MasProto-Oncogene Proteins c-mycTranscription Factors TFIIRibonucleasesPotassium PermanganateTranscription (biology)HumansRNA MessengerPromoter Regions GeneticMolecular BiologyModels GeneticGeneral transcription factorCell CycleGenetic Complementation TestDNA HelicasesPromoterCell BiologyFibroblastsFlow CytometryMolecular biologyDNA-Binding ProteinsKineticsTranscription Factor TFIIHMicroscopy FluorescenceMutationTranscription preinitiation complexTranscription factor II HTranscription Factor TFIIHPlasmidsMolecular and Cellular Biology
researchProduct